

Welcome to the Nerevu Employee Handbook!

Your First Week at Nerevu

Ensure that you complete all of the following

Access your new email account

Login to Fastmail [https://www.fastmail.com/login] with the following information:

	username: <YOUR_FIRST_INITIAL><YOUR_LAST_NAME>@nerevu.com, e.g., rcummings@nerevu.com

	password: separately emailed to you

Change your password

Instructions [https://www.fastmail.com/help/account/password.html]

Complete your Gusto profile

Follow the instructions contained in the email with the subject Let’s get you set up with Nerevu.

Complete Paperwork

	Sign and return your Employment Agreement

	Schedule a time [https://booking.nerevu.com/call-60m] for your orientation and ensure you have your passport (or drivers license and birth certificate) present for the meeting

	Add a headshot image and a 1 paragraph biography to Dropbox

Schedule Weekly Review

	Schedule a time [https://booking.nerevu.com/call-60m] for your reoccurring weekly Monday review meeting

AWS Help

By default, Nerevu Group’s EC2 instances are in the N. Virginia region.
To get access to EC2 instances via SSH, go here [https://handbook.nerevu.com/ec2-instance-connect.html].

Getting Setup

This section contains a several topics to help a new user get started during their first week at Nerevu.

System Setup

Initial setup

	Mac OS

	Windows

	Linux

Python environment setup

Install virtualenv to manage your Python environments

pip install virtualenv

Create and activate a virtual environment

cd REPO_NAME
virtualenv --no-site-packages --python=python3.x venv
source venv/bin/activate

Install required Python libraries

pip install -r requirements.txt -r dev-requirements.txt

Text Editor setup

	enable Newline at End of File [https://github.com/editorconfig/editorconfig/wiki/Newline-at-End-of-File-Support] (reason [https://www.reddit.com/r/Python/comments/1zjugg/question_why_does_pep8_recommend_leaving_a_blank/]).

	enable Unix-style line endings (View menu -> Line Endings -> … in Sublime Text).

	enable Trim trailing spaces [https://github.com/editorconfig/editorconfig/wiki/Property-research%3A-Trim-trailing-spaces] (reason [https://softwareengineering.stackexchange.com/a/121560]).

	VS Code configuration

Fastmail

Calendar Sync

Nerevu Group uses Fastmail Calendar to keep everyone up to date on events that are happening. This section will show you how to sync your existing calendars so that they update Fastmail. In general, there are two options for syncing with your teammates:

	Show them your events with the titles and all details (this is good for a “Work” calendar)

	Or show them an event block that just indicates that you are busy during that block (no details are shared - this is good for time blocks when you are busy but don’t need to share details about why)

We will go over how to setup both of these syncs.

From Google Calendars

See this article on synchronizing Google Calendar with Fastmail here [https://www.fastmail.com/help/calendar/sync.html].

KeePass and Encrypted Volumes

KeePass is the Password Manager that Nerevu Group uses to keep usernames and passwords secure. Encrypted Volumes help us keep important files secure. Please follow the instructions to download both so that you can get access to the Nerevu Group KeePass Database.

Installation

	KeePassXC [https://keepassxc.org/]

Configuration

	open preferences/settings

	click Security

	check Lock Databases after inactivity of and set seconds to 43200. This is the maximum time a database can be open before automatically closing. Adding this setting helps us keep our data more secure.

	uncheck Clear search query after

Encrypted Volume Configuration

	Mac OS

	Windows

	Linux

KeePass Setup

	Add keyfile to your encrypted volume

	download your .key keyfile (link will be given to you)

	cut and paste the downloaded keyfile to your encrypted volume

	make sure the keyfile does not exist anywhere else on your computer except in the encrypted volume (for security reasons)

	Open Nerevu Group KeePass Database

	Open the KeePass app

	Press Cancel if it tries to log into your personal database

	In the menu bar, navigate to Database > Open database...

	Navigate to the .kdbx password database in dropbox (link will be given to you) and press Open

	Enter the password provided to you

	Click Browse to navigate the keyfile stored in your encrypted volume

	Click Ok

	You did it! You accessed the Nerevu Group KeePass Database! Now enjoy a few minutes of you time. You deserve it ;)

Ngrok

Ngrok is a service that allows you to forward localhost to the public web through https. This comes in handy when you’re testing code that interacts with an API that requires a valid https URL (like QuickBooks in the Comissioner API [https://github.com/nerevu/commissioner-api]).

You can see how to use it by looking at the commissioner-api README [https://github.com/nerevu/commissioner-api#ngrok].

Visit Ngrok’s website [https://ngrok.com/] to learn more about it.

Cloze

See this article for pictures [https://help.cloze.com/help/how-do-i-connect-dropbox-to-cloze]

	Log in to you Cloze account.

	Click on More at the bottom left corner of the dashboard and then click on Settings.

	Under Accounts and Services, click on Connect Accounts to expand it.

	Click on the Add button.

	Select the respective service that you want to connect to Cloze.

	For Fastmail, select Other Email under Other Mail and Calendar.

	For Google account, select Google or G Suite.

	For Dropbox, go to Notes and Messaging and select Dropbox.

	This will take you to the sign-in page for the respective service.

	Sign in to the service using Nerevu credentials.

	Review the permissions and click on Allow, when prompted.

Fastmail app password

Fastmail comes under Other Email type in Cloze, and therefore giving access to a 3rd-party application, like Cloze, would need an app password that will be used by that application.

	From your Fastmail dashboard, open the dropdown menu at the top-left corner.

	Click on Settings and then on Passwords & Security.

	Look for App Passwords in this page and click on Manage →.

	Enter your password at the top of this page and click on Unlock.

	Click on New App Password button.

	Open the dropdown adjacent to Name, select Custom and enter Cloze in the input box.

	Make sure that the Access field is set to Mails, Contacts & Calendars.

	Click on Generate Password and make a temporary note of it, as it will not be displayed again once you click on Done.

	Use this password when you add this account in Cloze (Refer to Linking various Accounts and Services to Cloze).

Google Sheets API

Enable Google Cloud Platform

	Go to gSuite Additional Google services [https://admin.google.com/u/2/ac/appslist/additional]

	Search for Google Cloud Platform and click the checkbox

	Click on in the blue bar that appears above

Enable Google Drive API

	Go to Google Developers Console [https://console.developers.google.com].

	If you see Google Drive API in the list of APIs at the bottom of the screen, click it and skip the remaining steps.

	Otherwise, click on ENABLE APIS AND SERVICES.

	Search for Google Drive API and click on it.

	Click on Enable.

Create API Credentials

	Click on CREATE CREDENTIALS

	Select the options as shown below:

[image: credentials]

	Click on What credentials do I need?.

	Enter the details similar to shown below (name the service account after the client):

[image: service_account]

	Click Continue and save the downloaded JSON key file.

Access Google Sheets workbook

	Open the Google Sheets workbook that you need to access through APIs.

	Open the downloaded JSON key file and look for client_email.

	Share the workbook with the client_email address and grant Edit permission.

	Uncheck Notify People since this email address is not handled by a human.

	Follow the respective API/library documentation for Google Sheets, for authentication and usage.

Recommended Workflow

Daily

Enter Time

	Visit the Employee Hours Google Sheet [https://docs.google.com/spreadsheets/d/1Q-0R_q5-dWeaIAktvxRirZGXJZmMxd8qjVTujauMdak/edit#gid=806531735]

	Find the tab titled <YOUR NAME> (time)

	In the date column, double click the first empty cell to select a date

	In the project column, select the appropriate project from the dropdown

	In the task column, select the appropriate task from the dropdown

	In the total minutes column, enter the number of minutes spent on the task

Weekly

Check hours for the week

It’s expected that you already do this each work morning for the previous work day, while the details are still fresh

Write progress report

Details

	Due 5pm each Friday

	To: rcummings@nerevu.com

	Subject: Progress Update for week ending MM/DD/YY

Contents

Accomplishments

	Completed foo task

	Learned bar skill

	Updated documentation on baz

Struggles / Issues / Concerns

	Couldn’t figure out how to do xyz

	It takes too long to do abc on program qrs

Future Plans

	Complete foo and bar tasks

	Learn baz skill

	Updated documentation on xyz

Questions / Requests

	What is the proper way to abc?

Recommendations

	Process abc is inefficient because of xyz. We should improve it by implementing foo.

Git and Github

Github Notifications

Add your work email address to github so that relevant notifications don’t go to your personal inbox:

	Add your work email address at the top of this page [https://github.com/settings/emails]

	Select your company email address for nerevu in the Custom Routing section at the bottom of this page [https://github.com/settings/notifications]

	That’s it! You rock ;)

Basic Git Flow

When working with a Nerevu repository, it is important that you create your own branch for updates, fixes, or changes. When a change needs to be implemented, you simply commit and push your changes to your own branch and then submit a pull request to request merging your branch with origin. This prevents your changes from adversely affecting production code.

	Clone repository

git clone https://github.com/nerevu/<REPO_NAME>.git

	Create your branch to add your fix/feature

git checkout -b <BRANCH_NAME>

	Prettify your code

Python

manage prettify

JavaScript

npm run prettify

	Push your commits to Github and create a Pull Request [https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request]

git commit -m "<COMMIT_MESSAGE>"
git push --set-upstream origin <BRANCH_NAME>

NOTE: As a general rule, don’t merge code that purposefully raises errors and kills the application. Talk to Reuben about how to gracefully handle situations where you want to throw an error.

If master changes while you are fixing a pull request, rebase to master (please ask questions if you do not feel confident rebasing)

git fetch origin
git rebase origin/master

Fix conflicts and force push to YOUR BRANCH on Github.

git push -f origin <BRANCH_NAME>

Never force push anything to MASTER! If you feel you must, speak with Reuben in great detail first!

Project Management

Work Backlog

You can find issues that are being worked at the Nerevu Group Github Projects page [https://github.com/orgs/nerevu/projects]. If you click on the project you are working on, you will find a Kanban Board with all the issues (some of them have milestones with due dates).

Kanban Board

When you start working on a new issue, ensure you immediately do the following to keep the Kanban Board up to date:

	Create a Pull Request (PR) [https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request] and select what Project it belongs to. This automatically adds your PR to the In Progress column on the Kanban Board. The Assignees, Labels, and Milestone sections are only needed for issues (the issue needs Project as well.

	Go to the Kanban Board for the respective project and move the related issue from the To Do column to the In Progress column.

	Once done fixing the issue, rebase to squash the work into one commit git rebase -i and add the words (closes <ISSUE_NUMBER>) to the commit message. This will automatically close the corresponding issue once your PR gets merged.

	When your PR is merged into master, both the Issue and the PR in the Kanban Board will automatically move to the Done column.

Misc

Commit Messages

Your commit message should adhere to the following:

	be no more than 50 characters

	give a descriptive summary of the work accomplished

	begin with a present tense verb

	use sentence case

Examples:

Remove unused attributes
Refactor widgets
Update models and db initialization

If your commit fits one of the following categories, add the appropriate prefix.

	[FIX]: Fixes a bug

	[CHANGE]: Changes existing behavior or external API

	[ENH]: Enhances existing behavior

	[NEW]: Adds new behavior

	[CVE]: Patches a security vulnerability

Examples:

[FIX] Set default cache timeout
[CHANGE] Update college data model
[ENH] Optimize data fetching
[NEW] Make number of months configurable
[CVE] Patches elliptic CVE-2020-13822

If your commit fixes an existing issue, add the suffix (closes <ISSUE_NUMBER>).

Example:

[ENH] Standardize number format (closes #10)

Commit Frequency

You should be committing your code and pushing to GitHub often so that your changes are always available for others to see. Even if the commits don’t have completed code, still commit them. You should strive to have GitHub up-to-date with your local branch at all times. Once you are ready to merge your code into the master branch, rebase your commits into more logical groups. For example:

	All commits that fixed an issue should be grouped into one commit.

	Other code changes that are not related to an issue should be grouped into their specific commit tasks.

When to Rebase

There are several times that you should consider rebasing in Git.

	Periodically to the master branch to make sure your code doesn’t break the new changes to the master branch.

	When you make a change that a reviewer requested in a PR.

	Any other time that makes sense (you’ll learn this over time)

How to Rebase

Rebasing is necessary whenever history needs to be changed. This can be for changing commit messages or for changing the order and contents of commits. For example, if you want to change commit messages follow these steps:

	Run git rebase -i master

	Change the pick field to edit next to the commit you intend to change

	Save the file

	Run git rebase --continue

	This will reopen the rebase file where you can change the commit text and exit to save

Similarly, you can edit the contents of the files themselves when under edit mode. After step 2 above, the local file system will reflec the changes of the selected commit. Here you can change the files using a text editor and then recommit them like so:

	Run git rebase -i master

	Change the pick field to edit

	Make changes to the file system

	Run git status to see edited files

	Run git add . followed by git commit --ammend

	Complete the rebase using git rebase --continue

This will effectively change the edits included in that specific commit.

On the other hand, if you want to erase a commit entirely you can simply comment out the commits you wish to erase using # and then continue the rebase. This will edit the commit history to erase any commits you erase.

.gitignore File

	don’t commit cache folders and files (add them to .gitignore)

Nerevu Coding Style

The following examples will help you understand how you will be expected to code at Nerevu. Read through them and ask questions if you don’t understand.

Python/Flask

	Avoid complexity in your code. If it’s hard to understand what’s going on in a function, break it out. It shouldn’t take a lot of explaining to show what code is doing. Commenting will help with this.

	Most Nerevu projects have a manage.py file that has CLI commands that can be run for a project using the following CLI call - manage {function_name}. If the project you are working on has a manage.py file with aprettify function in it, you should run manage prettify on your code before your PR is merged. This keeps the formatting consistent.

	Practice DRY coding (Don’t Repeat Yourself). If you find you are writing similar code over and over, try abstracting it out into a function (if it makes sense to do so). The below example is trivial, but should get the point across.

INCORRECT
user1 = 'doug peterson'
user1 = " ".join(name.capitalize() for name in user1.split(" "))
user2 = 'george clooney'
user2 = " ".join(name.capitalize() for name in user2.split(" "))

CORRECT
def format_name(name):
 return " ".join(name.capitalize() for name in user1.split(" "))

user1 = 'doug peterson'
user1 = format_name(user1)
user2 = 'george clooney'
user2 = format_name(user2)

	Start thinking like a functional programmer. Don’t mutate objects. Return new objects instead. See the docs [https://docs.python.org/3/library/functional.html] for more info on functional programming in python.

users = [{"name": "brian"}, {"name": "jenna"}]

INCORRECT
def lowercase_name(user):
 user["name"] = user["name"].lower()
 return user

list_of_users = map(lowercase_name, users)

CORRECT
def lowercase_name(user):
 return {**user, "name": user["name"].lower()}

list_of_users = map(lowercase_name, users)

	use pos instead of i when using enumerate (with range() you don’t need to use this)

names = ['bob', 'jack', 'bill', 'jessica']

INCORRECT
for i, name in enumerate(names):
 print(f"{i}: {name}")

CORRECT
for pos, name in enumerate(names):
 print(f"{pos}: {name}")

	Generators

Name Generators gen_{function_name}
Use generators instead of appending to empty lists

INCORRECT
letters = []

for i in range(10):
 if i % 2:
 letters.append(chr(i))

CORRECT - notice the naming of the function as well as the (gen_)

def gen_letters(nums):
 for i in nums:
 if i % 2:
 yield chr(i)

letters = list(gen_letters(range(10)))

	use list comprehensions instead of list and map

names = ['Phillip', 'Annette']
lowercase_names = lambda n: n.lower()

INCORRECT
new_names = list(map(lowercase_names, names))

CORRECT
new_names = [lowercase_names(n) for n in names]

	use dict.items() instead of key in dict

obj = {"name": "brian"}

INCORRECT
for key in obj:
 print(obj[key])

CORRECT
for key, val in obj.items()
 print(val)

	make variable names meaningful unless they are in a list comprehension or lambda function, etc..

users = [{"name": "brian"}, {"name": "jenna"}]

INCORRECT
def gen_users(n):
 yield n['name']

list_of_users = list(gen_users(users))

CORRECT
def gen_users(user):
 yield user['name']

list_of_users = list(gen_users(users))

ALSO CORRECT
list_of_users = [u["name"] for u in users]
list_of_users = map(lambda u: u["name"], users)

	If you’re not sure if a key will be present in a dictionary, use dict.get("key") so your code doesn’t break.

user = {"name": "brian"}

INCORRECT
age = user["age"] # Throws a KeyError

CORRECT
age = user.get("age") # returns None

	Add breaks to short circuit for loops once the correct field is found

numbers = [1,2,3,4,5,6,7,8,9,10]

CORRECT EXAMPLE
contains_number_four = False

for number in numbers:
 if number is 4:
 contains_number_four = True
 break # prevent the loop from continuing!

	Nested loops in general are code smell really - Set datatypes are indexed, so doing if x in Set is faster than doing a double for loop

names = ["Bob", "Jesse", "Alyssa", "Frank"]
whitelist = {"Bill", "Jack", "Frank", "Frank"}

These functions yield names that are present in a whitelist

INCORRECT
def gen_names():
 for name in names:
 for other_name in whitelist:
 if name == other_name:
 yield name

CORRECT
def gen_names():
 for name in names:
 if name in whitelist:
 yield name

MORE CORRECT
def gen_names():
 for name in set(names).intersection(whitelist):
 yield name

	Don’t use types (e.g. str, list, dict, etc.) in your variable names

INCORRECT VARIABLE NAMES
numbers_array = [1,2,3,4,5,6,7,8,9,10]
user_dict = {'name': 'bob', 'age': 16}
names_str_list = ['bill', 'george', 'katie', 'geoffrey', 'jessica']

CORRECT VARIABLE NAMES
numbers = [1,2,3,4,5,6,7,8,9,10]
user = {'name': 'bob', 'age': 16}
names = ['bill', 'george', 'katie', 'geoffrey', 'jessica']

	Don’t commit commented out code.

name = 'bob'

DON'T COMMIT THIS
name += "cat"
print(name)

	Most Nerevu projects have a manage.py file that has CLI commands that can be run for a project using the following CLI call - manage {function_name}. If the project you are working on has a manage.py file with aprettify function in it, you should run manage prettify on your code before your PR is merged. This keeps the formatting consistent.

Coffeescript/Mithril

	prefer is and isnt over == and !=

	prefer unless ctrl.page() to if ctrl.page() is undefined

	coffeescript vars should be pascalCase

	Loop through objects like this: Object.entries(statsByRep).map ([rep, repStats]) =>

New Projects

Create a new Project

Start new projects by following the steps in the README of a Nerevu Cookiecutter [https://github.com/nerevu?q=cookiecutter] repo.

ENV file

A file for your environment variables.

	Create an env file in your Dropbox folder

touch Dropbox/Nerevu/Security/<YOUR_USERNAME>/<PROJECT_NAME>-env

	Navigate to your project directory

cd /PATH/TO/<PROJECT_NAME>

	Create a symbolic link from the env file to your new project

ln -s Dropbox/Nerevu/Security/<YOUR_USERNAME>/<PROJECT_NAME>-env .env

Example

Let’s say you create a new project called CashFlowAPI and your username is rcummings. You should create an env file named cashflow-api-env in the Nerevu Group Dropbox/Security/rcummings/ directory. You should then run ln -s Nerevu Group Dropbox/Security/rcummings/cashflowapi_env .env from the root folder of your new project (see this page [https://www.cyberciti.biz/faq/creating-soft-link-or-symbolic-link/] to learn more about symbolic links).

We use python-dotenv [https://github.com/theskumar/python-dotenv#getting-started] to manage environment variables. Make sure you install this package into your new project so your environment variables get picked up by your application.

Python Requirements

You should set your python projects up with 3 different requirements files that contain references to the packages needed by the program.

	base-requirements.txt

	Contains the necessary packages for most Nerevu APIs to run (you’ll find examples of this in other repositories on GitHub).

	requirements.txt

	Contains an import statement for the base-requirements.txt file.

	Contains other necessary packages for the current project to run.

	dev-requirements.txt

	Contains necessary and/or useful packages for developers working on the current project.

Resources

Recording Time

	Don’t dwell on something too long. Just move to a different task.

Timely

	Getting Started with Timely [https://support.timelyapp.com/en/collections/76502-getting-started]

Timely uses the 2 general concepts to organize completed tasks: Projects and Tags. Projects can be generally grouped into two categories: Internal and Client.

	Internal projects are assigned to the Nerevu client and is work that is not tied to a direct client, but is necessary to company operations (checking mail, meetings, general learning, etc.)

	Client projects are assigned to an individual client, and is work that is directly related to a client project (developing features, reviewing code, etc.).

Similarly, Tags come in two categories: Billable and Non-Billable….

When inputting hours worked, tags should be applied to every task we do, whether internal or external, as well as a simple description of the work we did.

NOTE: When using the learning tag, the work is general in nature unrelated to a specific project (e.g., functional programming), please use the Internal project. However, if the learning is in relation to a specific project you are working on (e.g., Flask Admin), please use that client project instead of Internal.

ERP

Dropbox

	Nerevu Group Team Space [https://paper.dropbox.com/doc/Guide-to-our-Nerevu-Group-Team-Space--AisxSZ_TjgHPNfHoh5VsaSt~Ag-qZtHnwo9rzj6U6mIyCE9F]

	Getting Started with Paper [https://paper.dropbox.com/doc/Get-started-with-Dropbox-Paper--AitIP~Z~5AAoMt2aZMgjeQ6HAQ-BAfb2QTMksBDEgrXXiCWi]

Cloze

	Getting Started with Cloze [https://help.cloze.com/help/video-getting-started-with-cloze]

	Where can I find my Cloze API key? [https://help.cloze.com/help/api-key]

	API documentation [https://api.cloze.com/api-docs/]

	Add GSuite and Dropbox Accounts [https://help.cloze.com/help/how-do-i-connect-dropbox-to-cloze]

Fastmail

	Getting Started with Fastmail [https://www.fastmail.com/help/guides/personal.html#gettingstarted]

	Sharing calendars [https://www.fastmail.com/help/business/sharecalendars.html]

	Syncing calendars [https://www.fastmail.com/help/calendar/sync.html]

	Device setup [https://www.fastmail.com/help/clients/applist.html]

Development

Readings

	The Hitchhiker’s Guide to Python! [https://docs.python-guide.org/]

	pre-commit hooks [https://pre-commit.com/]

	Python Functional Programming Modules [https://docs.python.org/3/library/functional.html]

Talks

	Structure and Interpretation of Computer Programs [https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-001-structure-and-interpretation-of-computer-programs-spring-2005/video-lectures/]

	Raymond Hettinger - Beyond PEP 8 [https://www.youtube.com/watch?v=wf-BqAjZb8M]

	Python Concurrency From the Ground Up: LIVE! [https://www.youtube.com/watch?v=MCs5OvhV9S4&feature=player_embedded]

	Simple Made Easy [https://www.infoq.com/presentations/Simple-Made-Easy/]

Design

	logos (color [https://www.vectorlogo.zone], monochrome [https://simpleicons.org])

	fonts [http://www.awayback.com/index.php/2010/02/03/revised-font-stack/]

Devops

	Continuous Integration [http://blog.codepipes.com/hosted-ci-comparison/hosted-ci-comparison.html#conclusion]

CKAN

On AWS EC2

	Upgrading CKAN

	Configuring CKAN with https

	Making CKAN live

Misc

Common Issues

Forgot the Environment File - API Connection Issues

Every project should have a .env file associated with it. You can find these files stored as described here. If you don’t have a .env file, you will get confusing errors when trying to connect to an API because you will be missing your client_id or other important information. To get the .env file in your project, check the Nerevu Group Dropbox for one and create a symbolic link to it. If you don’t find one in Dropbox, create one and add it to Dropbox.

Retainer Invoicing

	Create a non project linked invoice billed to “Retainer Fees” (example [https://invoicing.xero.com/view/fa1810de-26a7-476b-b347-da3f9b087132])

	Create a project linked credit note paid from “Retainer Fees” (example [https://go.xero.com/AccountsReceivable/ViewCreditNote.aspx?creditNoteID=b9581d93-7e82-41a5-a639-aa30c6e8eecb])

	Once paid, reconcile the bank transfer

	Apply credits to future retainer based work

Index

Setting up HTTPS on CKAN EC2

CKAN uses an Nginx server as a reverse proxy to an Apache server. This means that we will need to configure an HTTPS certificate for our Nginx server instead of our Apache server to get CKAN working on HTTPS.

This tutorial [https://www.youtube.com/watch?v=ng5DsxYp-Bk] will give you a basic idea of how reverse proxies work (we’re using Apache instead of Node).

Prerequisites

	Enable inbound connections on port 443 (HTTPS) for your EC2 instance Security Group rules.

	Knowledge of terminal editors - I use vim, but feel free to use nano or whatever editor you like.

	Below are the versions for the technologies I’m using. You probably don’t need the exact versions:

	Nginx - nginx/1.12.2

	Apache Web Server - Server version: Apache/2.4.41 ()

	CKAN - CKAN 2.8.3 (2020-03-13) delivered by Link Digital (AWS Marketplace)

Set up Certbot on your EC2 instance

Before you can get a certificate to use HTTPS, you need to verify that you are in control of the domain that you are trying to get a certificate for. To do this, we will complete an HTTP Challenge [https://letsencrypt.org/docs/challenge-types/#http-01-challenge].

Certbot is a tool that works with LetsEncrypt to help you issue and renew TLS certificates for free. We will be using this to configure our https certificates. Our CKAN instance is hosted on an Amazon Linux 2 AMI, which is most closely related to Centos Linux distributions. To get Certbot working on your EC2 instance, do the following:

	Stop nginx and apache servers.

sudo systemctl stop nginx
sudo systemctl stop httpd

	Prepare Certbot

Follow the instructions in this tutorial (only step #1) [https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/SSL-on-amazon-linux-2.html#prepare]. This worked better for me than the Certbot instructions.

	Install Certbot

sudo yum install -y certbot python2-certbot-apache

	Run Certbot

the certonly option will allow us to configure our web servers the way we want.

sudo certbot certonly --nginx

Saving debug log to /var/log/letsencrypt/letsencrypt.log
Plugins selected: Authenticator nginx, Installer nginx
No names were found in your configuration files. Please enter in your domain
name(s) (comma and/or space separated) (Enter 'c' to cancel):

	Type in the domain name and press enter. You should get a confirmation that your certificates have been downloaded, with a path to the fullchain.pem and privkey.pem file locations. Put these file paths somewhere you can access them easily for the next steps.

Obtaining a new certificate
Performing the following challenges:
http-01 challenge for data.openpeoria.com
nginx: [error] invalid PID number "" in "/run/nginx.pid"
Waiting for verification...
Cleaning up challenges
#
IMPORTANT NOTES:
- Congratulations! Your certificate and chain have been saved at:
/etc/letsencrypt/live/data.openpeoria.com/fullchain.pem
Your key file has been saved at:
/etc/letsencrypt/live/data.openpeoria.com/privkey.pem
Your cert will expire on 2020-11-23. To obtain a new or tweaked
version of this certificate in the future, simply run certbot
again. To non-interactively renew *all* of your certificates, run
"certbot renew"
- If you like Certbot, please consider supporting our work by:
#
Donating to ISRG / Let's Encrypt: https://letsencrypt.org/donate
Donating to EFF: https://eff.org/donate-le

	Configure Automated Certificate Renewal

Ensure no other crontab exists

sudo grep certbot /etc/crontab

If no other one exists, add it

echo "0 0,12 * * * root python -c 'import random; import time; time.sleep(random.random() * 3600)' && certbot renew -q" | sudo tee -a /etc/crontab > /dev/null

References:

	docs.aws.amazon.com [https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/SSL-on-amazon-linux-2.html]

	certbot.eff.org [https://certbot.eff.org/lets-encrypt/centosrhel7-nginx]

Set up your servers to redirect to HTTPS

Edit your Nginx Config File

Now we need to configure our Nginx and Apache servers to work with HTTPS.

	Edit the /etc/nginx/conf.d/ckan.conf file.

sudo nano /etc/nginx/conf.d/ckan.conf

	We will need to remove the existing server block and add the following server block rule to listen for HTTPS traffic.

server {
 listen 443;
 ssl on;
 # REPLACE THESE 2 PATHS WITH THE PATHS YOU COPIED FROM CERTBOT EARLIER
 ssl_certificate /etc/letsencrypt/live/data.openpeoria.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/data.openpeoria.com/privkey.pem;

 client_max_body_size 100M;
 location / {
 #redirect all https requests to the apache server hosting our CKAN instance
 proxy_pass http://127.0.0.1:8000/;
 proxy_set_header X-Forwarded-For $remote_addr;
 proxy_set_header Host $host;
 proxy_cache cache;
 proxy_cache_bypass $cookie_auth_tkt;
 proxy_no_cache $cookie_auth_tkt;
 proxy_cache_valid 30m;
 proxy_cache_key $host$scheme$proxy_host$request_uri;
 # In emergency comment out line to force caching
 # proxy_ignore_headers X-Accel-Expires Expires Cache-Control;
 }
}

	Now add another rule for Port 80 (HTTP) traffic that redirects all traffic through the HTTPS rule we just made.

server {
 listen 80;
 server_name data.openpeoria.com;
 rewrite ^ https://$server_name$request_uri? permanent;
}

	Save and exit this file.

	Restart your Nginx server.

sudo systemctl restart nginx

	If you get the error

Job for nginx.service failed because the control process exited with error code. See "systemctl status nginx.service" and "journalctl -xe" for details.

kill the nginx process and retry.

sudo pkill -f nginx & wait $!
[1] 9588
[1]+ Done sudo pkill -f nginx
sudo systemctl restart nginx

Edit Your Apache Config Files

If mod_ssl is installed on Apache, you will have an /etc/httpd/conf.d/ssl.conf file that is listening for HTTPS connections. We want Nginx to handle HTTPS, so we will remove this functionality.

	Open an editor for /etc/httpd/conf.d/ssl.conf.

sudo nano /etc/httpd/conf.d/ssl.conf

	Remove the HTTPS listener

remove this line
Listen 443

	Ensure the correct server name is present

Search for lines like the following
SSLCertificateFile /etc/letsencrypt/live/data.openpeoria.com/fullchain.pem
SSLCertificateKeyFile /etc/letsencrypt/live/data.openpeoria.com/privkey.pem

	Save and exit this file.

	Comment out the mod_http2 section of your /etc/httpd/conf/httpd.conf file.

<IfModule mod_http2.c>
Protocols h2 h2c http/1.1
</IfModule>

	Restart your Apache server.

sudo systemctl restart httpd

	If you are having trouble restarting your server, check the config file by running apachectl configtest from the command line. Don’t worry if you get an SSLCertificateFile does not exist error. Apache isn’t handling HTTPS, so we don’t need to worry about this.

Edit your CKAN Installation

After the following two steps, your site should run via https! However, static content may still be loaded via http. We can fix this by changing some settings in the CKAN installation.

	Change the ckan.site_url variable in the /etc/ckan/default/production.ini file to your https domain name.

Site Settings
ckan.site_url = https://data.openpeoria.com

	Restart your apache server

sudo systemctl restart httpd

Conclusion

Your site should be up and running now over HTTPS! If you don’t see it working immediately, you may have caching issues. Try opening your site in a different browser.

You can also check your site at https://www.whynopadlock.com. This will give you helpful information for troubleshooting.

Logging into EC2 instance with different keys

Note: These instructions work for Amazon Linux 2 AMIs by default, but they will not work with other AMIs unless you configure them correctly [https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-connect-set-up.html].

Two Possible Solutions

To get access to your EC2 instance, you can connect via the online connect portal on AWS (easier) or you can grant yourself a temporary token to allow you access (a little less easy).

For either scenario, you will need to generate a new private/public key-pair set. Do that now.

ssh-keygen -t rsa -f new_key

AWS Connect Portal (easier)

	Select your instance on AWS.

	Click the Connect button.

	Select EC2 Instance Connect (browser-based SSH connection).

	Change the username to ec2-user.

	Open your public key (new_key.pub) in Notepad (or another editor) and copy it to your clipboard.

	Add your public key the authorized_keys file.

sudo nano ~/.ssh/authorized_keys

Paste the public key on a new line, then save the file.

NOTE: Vim is a terminal text editor. You can use any other terminal editor to do this as well (e.g. Nano)

	You should be able to ssh into your EC2 instance from your local computer with your private key now.

ssh -i {path/to/new_key} ec2-user@{public_ip_address}

Temporary User Token (a little less easy)

Grant Correct User Permissions

First, you need to give your user permissions to use a different key file to log into the EC2 instance.

	Log into the AWS Console

	Search for IAM and click it

	Click Groups

	Click on admins

	Click Add Users to Group

	Select your user and click Add Users

Connect to the Instance

Now that you have the permissions, access the ec2 through an ssh client.

	Download the AWS CLI version 2 [https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html]

You might have to copy/move your aws-cli installation.

sudo cp /usr/local/bin/aws /usr/bin/

	Use the aws-cli to send your key to the ec2 instance for temporary access.

Make sure to change the region, instance-id, availability-zone, and ssh-public-key to your respective values.

aws ec2-instance-connect send-ssh-public-key --region us-east-1 --instance-id i-0dde2e21194e727ae --availability-zone us-east-1c --instance-os-user ec2-user --ssh-public-key file://new_key.pub

After running this command, you only have 60 seconds to log into your ec2 instance. If you miss the window to log in, just run the command again to get 60 more seconds.

	Log in to the ec2 instance using it’s public IP address and your private key.

ssh -i ./new_key ec2-user@{public_ip}

	Copy your public key into the ~/.ssh/authorized_keys file on a new line. This allows you to access the instance whenever you need.

I opened my public key file in a text editor (notepad) and copied it from there with Ctrl+C.

You’re in! Great job :) You should feel very satisfied with your accomplishments.

Linux System Setup

NOTE: The following has not been fully tested!

Required software

Python 3

Installation

apt-get install python3

Configuration

Add the python3 directory to your PATH so your system has access to the Python commands

echo "export PATH=\"/usr/local/opt/python3/libexec/bin:$PATH\"" >> ~/.profile

Git (distributed version control software)

Installation

apt-get install git

Configuration

Set your name (replace Your Name with your first and last name, e.g., Reuben Cummings)

git config --global user.name "Your Name"

Set your commit email address (replace your@email.address with your email address, e.g., reubano@gmail.com).

Note: This should be the same email address you used to signup for your GitHub account

git config --global user.email "your@email.address"

Check that both configurations have been set correctly

git config --global --list

PostgreSQL (relational database)

Installation

apt-get install postgresql@10

Configuration

Create a PostgreSQL user

sudo createuser -U postgres YOUR_USERNAME

Start the server

sudo pg_ctl -D /usr/local/var/postgres start

Node Version Manager (NVM)

Installation

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.32.1/install.sh | bash

Check successful installation using

nvm --version

Configuration

List the available versions of Node.js

nvm ls-remote

Install the version of Node.js that you require

nvm install 6.9.1

Switch between installed versions of Node.js

nvm use 6.9.1

Mac OS System Setup

Build tools

Xcode Command Line Tools (gives your mac a C compiler)

Installation

xcode-select --install

Homebrew (third-party macOS package manager)

Installation

	In your terminal, type the following command:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

	The script will explain what changes it will make and prompt you before the installation begins.

Configuration

Now you will update your PATH environment variable so your system has access to the Homebrew commands

	Ensure you have ~/.profile file by typing the following command in your terminal:

touch ~/.profile

	Add the Homebrew directory to your PATH by typing the following command in your terminal

echo "export PATH=\"/usr/local/bin:/usr/local/sbin:$PATH\"" >> ~/.profile

Required software

Python 3

Installation

brew install python3

Configuration

Add the python3 directory to your PATH so your system has access to the Python commands

echo "export PATH=\"/usr/local/opt/python3/libexec/bin:$PATH\"" >> ~/.profile

Git (distributed version control software)

Installation

brew install git

Configuration

Set your name (replace Your Name with your first and last name, e.g., Reuben Cummings)

git config --global user.name "Your Name"

Set your commit email address (replace your@email.address with your email address, e.g., reubano@gmail.com).

Note: This should be the same email address you used to signup for your GitHub account

git config --global user.email "your@email.address"

Check that both configurations have been set correctly

git config --global --list

PostgreSQL (relational database)

Installation

brew install postgresql@10

Configuration

Create a PostgreSQL user

sudo createuser -U postgres YOUR_USERNAME

Start the server

sudo pg_ctl -D /usr/local/var/postgres start

Node Version Manager (NVM)

Installation

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.32.1/install.sh | bash

Check successful installation using

nvm --version

Configuration

List the available versions of Node.js

nvm ls-remote

Install the version of Node.js that you require

nvm install 6.9.1

Switch between installed versions of Node.js

nvm use 6.9.1

Encrypted Volume

Usage

Create an encrypted .dmg image file on Mac (Source: Apple [https://support.apple.com/guide/disk-utility/create-a-disk-image-dskutl11888/mac])

	In the Disk Utility app on your Mac, choose File > New Image > Blank Image.

	Enter a filename for the disk image, add tags if necessary, then choose where to save it. This is the name that appears in the Finder, where you save the disk image file before opening it.

	In the Name field, enter the name for the disk image. This is the name that appears on your desktop and in the Finder sidebar, after you open the disk image.

	In the Size field, enter a size for the disk image.

	Click the Format pop-up menu, then choose a format:

	If you’re using the encrypted disk image with a Mac computer using macOS 10.13 or later, choose APFS or APFS (Case-sensitive).

	If you’re using the encrypted disk image with a Mac computer using macOS 10.12 or earlier, choose Mac OS Extended (Journaled) or Mac OS Extended (Case-sensitive, Journaled).

	Click the Encryption pop-up menu, then choose an encryption option.

	Enter and re-enter a password to unlock the disk image, then click Choose. WARNING: If you forget this password, you won’t be able to open the disk image and view any of the files.

	Use the default settings for the rest of the options:

	Click the Partitions pop-up menu, then choose Single partition - GUID Partition Map.

	Click the Image Format pop-up menu, then choose read/write disk image.

	Click Save, then click Done.

	Disk Utility creates the disk image file where you saved it in the Finder and mounts its disk icon on your desktop and in the Finder sidebar.

	In the Finder, copy the documents you want to protect to the disk image.

	If you want to erase the original documents so they can’t be recovered, drag them to the Trash, then choose Finder > Empty Trash.

Making CKAN Live

Point your live URL to the correct DNS

	Go to the AWS EC2 Dashboard.

	Select your EC2 instance and copy the Public DNS URL.
[image: image-20200720113944879]

	On your hosting service, create a CNAME record with your live site URL. Point it to the Public DNS URL you just copied.

	Example: CNAME		data.openpeoria.com

Point CKAN Config to your live URL

	SSH into your CKAN EC2 instance.

	Open the production.ini file and change the ckan.site_url variable.

sudo nano /lib/ckan/default/src/ckan/production.ini

ckan.site_url = {your_live_site}
example - ckan.site_url = https://data.openpeoria.com

	Restart your apache server

sudo systemctl restart httpd

Configure HTTPS

Follow these instructions for setting up https.

Conclusion

After you have followed these instructions, you should see your CKAN instance running at your new live site. Check it out to make sure everything worked.

Upgrading CKAN to a New Instance

The Official Instructions [https://helpdesk.links.com.au/kb/faq.php?id=15] don’t have example code, so I wrote this doc. I am not doing the in-place instructions.

You will want 3 terminals open - one logged into the old instance, one logged into the new instance, and one for your local machine.

Old Machine
ssh -i {path/to/private_key} ec2-user@{old_instance_ip}

New Machine
ssh -i {path/to/private_key} ec2-user@{new_instance_ip}

If you don’t have access to key-pair for the old or new machine, follow these instructions [https://github.com/nerevu/handbook/blob/master/docs/ec2-instance-connect.md#logging-into-ec2-instance-with-different-keys].

Restore databases from the old to the new instance

	Export the ckan_default and datastore_default PostgreSQL databases using pg_dump [https://www.postgresqltutorial.com/postgresql-backup-database/]. When prompted for the password, use the the postgres user’s password that was previously set. You can find this password in the mpsotto.kdbx KeePassXC database under the AWS CKAN folder.

pg_dump -U postgres -W -F t ckan_default > ~/ckan_default_dump.tar

pg_dump -U postgres -W -F t datastore_default > ~/datastore_default_dump.tar

	Copy the dump files from the old machine to your new machine (don’t forget to change the IP addresses and private keys below)

RUN THE FOLLOWING COMMANDS FROM YOUR LOCAL MACHINE
###

copy the files and directories from your old instance to your local machine
scp -i {path/to/private_key} ec2-users@{old_instance_ip}:~/ckan_default_dump.tar ~/
scp -i {path/to/private_key} ec2-users@{old_instance_ip}:~/datastore_default_dump.tar ~/

copy the files and directories from your local machine to your new machine
scp -i {path/to/private_key} ~/ckan_default_dump.tar ec2-users@{new_instance_ip}:~/
scp -i {path/to/private_key} ~/datastore_default_dump.tar ec2-users@{new_instance_ip}:~/

Learn more about the scp command here. [https://medium.com/dev-blogs/transferring-files-between-remote-server-and-local-system-133d78d58137]

	Drop and recreate the databases in the new machine

enter postgres terminal
sudo -u postgres psql

-- drop existing connections to ckan_default, drop the table, then recreate it
SELECT pg_terminate_backend(pg_stat_activity.pid)
FROM pg_stat_activity
WHERE pg_stat_activity.datname = 'ckan_default'
 AND pid <> pg_backend_pid();

DROP DATABASE ckan_default;

CREATE DATABASE ckan_default;

-- drop existing connections to datastore_default, drop the table, then recreate it
SELECT pg_terminate_backend(pg_stat_activity.pid)
FROM pg_stat_activity
WHERE pg_stat_activity.datname = 'datastore_default'
 AND pid <> pg_backend_pid();

DROP DATABASE datastore_default;

CREATE DATABASE datastore_default;

-- Hit Ctrl+Z to exit postgres terminal

	pg_terminate_backend reference [https://stackoverflow.com/a/5408501]

	Restore the databases from the old machine to the new machine using pg_restore [https://www.postgresql.org/docs/9.2/app-pgrestore.html].

move dump files to root to make them easily findable
sudo mv ~/ckan_default_dump.tar /
sudo mv ~/datastore_default_dump.tar /

Change permissions to avoid permissions errors
sudo chmod 777 /ckan_default_dump.tar
sudo chmod 777 /datastore_default_dump.tar

restore the databases using pg_restore as the postgres user
sudo -u postgres pg_restore --dbname=ckan_default --create --verbose /ckan_default_dump.tar
sudo -u postgres pg_restore --dbname=datastore_default --create --verbose /datastore_default_dump.tar

Move the Filestore

	In the old instance, if you have enabled the CKAN filestore, copy it’s directory to your home folder. (If you’re unsure, check /etc/ckan/default/production.ini for the ckan.storage_path variable to see if it is set. Copy that directory if it is present.)

	Copy the filestore to your new machine (don’t forget to change the IP addresses and private keys below)

RUN THE FOLLOWING COMMAND FROM YOUR LOCAL MACHINE
###

copy the files and directories from your old instance to your local machine
scp -i {path/to/private_key} -r ec2-users@{old_instance_ip}:~/ckan ~/

copy the files and directories from your local machine to your new machine
scp -i {path/to/private_key} -r ~/ckan ec2-users@{new_instance_ip}:~/

Learn more about the scp command here. [https://medium.com/dev-blogs/transferring-files-between-remote-server-and-local-system-133d78d58137]

	Extract the filestore archive to the same location on the new instance and set the ckan.storage_path value appropriately within the /etc/ckan/default/production.ini file. If it is the same name, you don’t need to worry about changing the storage_path variable.

remove the existing filestore
sudo rm -rf /var/shared_storage/ckan

replace with the old filestore
sudo mv ~/ckan/ /var/shared_storage/

	Set the ckan folder’s permissions to apache:apache (otherwise datasets won’t be able to be added)

sudo -u root chown -R apache:apache /var/shared_storage/ckan/

Move the Promoted Image

	In the old instance, copy the promoted image to your home directory.

sudo cp /lib/ckan/default/src/ckan/ckan/public/base/images/promoted-image.jpg ~/

	Copy the promoted image to your new machine (don’t forget to change the IP addresses and private keys below)

RUN THE FOLLOWING COMMAND FROM YOUR LOCAL MACHINE
###

copy the files and directories from your old instance to your local machine
scp -i {path/to/private_key} ec2-users@{old_instance_ip}:~/promoted-image.jpg ~/

copy the files and directories from your local machine to your new machine
scp -i {path/to/private_key} ~/promoted-image.jpg ec2-users@{new_instance_ip}:~/

Learn more about the scp command here. [https://medium.com/dev-blogs/transferring-files-between-remote-server-and-local-system-133d78d58137]

	Move the promoted image to the images directory

sudo mv ~/promoted-image.jpg /lib/ckan/default/src/ckan/ckan/public/base/images/

	Link to promoted-image.jpg in the html snippet containing the promoted image code.

sudo nano /lib/ckan/default/src/ckan/ckan/templates/home/snippets/promoted.html

<!-- add the path to promoted-image.jpg -->

Move any installed extensions

	Check your old and new ckan instances to see what extensions need to be transferred.

anything with ckanext- in the directory name is an extension

Old Instance
##
ls /lib/ckan/default/src/
... ckan ckanext-apihelper ckanext-harvest ckanext-pages

New Instance
##
ls /lib/ckan/default/src/
... ckan ckanext-harvest ckanext-pages

Assuming your two directories looked like the two above, you would need to copy the ckanext-apihelper extension to your home folder. You will place this in the same spot in your new instance.

sudo cp -R /lib/ckan/default/src/ckanext-apihelper ~/

	Copy the extensions to your new machine (don’t forget to change the IP addresses and private keys below)

RUN THE FOLLOWING COMMAND FROM YOUR LOCAL MACHINE
###

copy the files and directories from your old instance to your local machine
scp -i {path/to/private_key} -r ec2-users@{old_instance_ip}:~/ckanext-{extension_name} ~/

copy the files and directories from your local machine to your new machine
scp -i {path/to/private_key} -r ~/ckanext-{extension_name} ec2-users@{new_instance_ip}:~/

Learn more about the scp command here. [https://medium.com/dev-blogs/transferring-files-between-remote-server-and-local-system-133d78d58137]

	Move the extensions to the proper directory

sudo mv -R ~/ckanext-{extension_name} /lib/ckan/default/src/

	add the extension name to the end of the plugins variable in the CKAN config file

sudo nano /etc/ckan/default/production.ini

ckan.plugins = stats text_view image_view recline_view datastore datapusher resource_proxy geo_view pages harvest ckan_harvester apihelper

Final Steps

	Perform a Solr re-index so the new Solr service contains records of the newly imported data. Use the commands below:

activate the python virtualenv and go to the ckan directory
. /usr/lib/ckan/default/bin/activate
cd /usr/lib/ckan/default/src/ckan

rebuild the index for the database
paster --plugin=ckan search-index rebuild --config=/etc/ckan/default/production.ini

	Disassociate the Elastic IP Address from the old instance and Associate it with the new instance.

	View your running instances on AWS. Remember the Elastic IP address (copy and paste it somewhere so you don’t forget it).

[image: Elastic IP]

	Select the old instance, click the Actions dropdown, click Networking, then click Disassociate Elastic IP address.

[image: Disassociate EIP]

	Select Elastic IPs from the sidebar menu under Networking.

[image: EIPs Option]

	Select the same IP Address you just Disassociated from the old instance, click the Actions dropdown, then click Associate Elastic IP address.

[image: Associate EIP]

	Select Instance, then click into the instance input field and select the new instance.

	Click into the Private IP input field and select the Private IP of the instance (there will likely only be one option).

	Click Associate.

[image: Final Associate EIP Option]

	Follow these instructions to configure HTTPS on the server.

	Restart the Nginx and Apache servers if you didn’t already in the HTTPS setup.

sudo systemctl restart nginx
sudo systemctl restart httpd

Check that data was transferred correctly

	[] Check that the promoted-image on the main page [http://data.openpeoria.com] is present.

	[] Check that all ckan users [http://data.openpeoria.com/user/] are still present.

	[] Check that all ckan datasets [http://data.openpeoria.com/dataset] are still present.

Setup CodeDeploy

	First, you will need to move the production.ini to the main CKAN codebase directory and create a symlink to it in the original directory. This is so that you will be able to directly edit the production.ini without having to ssh into the EC2 instance.

sudo mv /etc/ckan/default/production.ini /lib/ckan/default/src/ckan/

sudo ln -s /lib/ckan/default/src/ckan/production.ini /etc/ckan/default/production.ini

	The rest of the CodeDeploy instructions will come at a later date (when we finish the setup). You can view this Github Issue [https://github.com/openpeoria/AWS-CKAN/issues/7] for details on progress.

Configure HTTPS on the server

	Read here

Debugging in VS Code

In VS Code, you can create a launch.json file that allows you to add breakpoints and step through your API code. Here are the steps:

	Open your project in VS Code.

	Click the debug menu on the sidebar.

	Click create a launch.json file

[image: Set up launch.json]

	Choose Python as the language.

	I typically choose Python File as the template, and then just add the following to the configuration.

{
 "configurations": [
 {
 "name": "Dev Ngrok",
 "type": "python",
 "request": "launch",
 "module": "flask",
 "env": {
 "FLASK_APP": "app:create_app('Ngrok')",
 "FLASK_ENV": "development",
 "FLASK_DEBUG": "0"
 },
 "args": [
 "run",
 "--no-debugger",
 "--no-reload"
]
 }
]
}

	The debug configuration should now show up in the debug menu on the sidebar. Now you can add break points to your code and click the Green Triangle button to run your flask application.

[image: Run the debug configuration]

If you want to run the application with a different configuration mode, you can replace the Ngrok in app:create_app('Ngrok') with any other config mode.

You can learn more about the VS Code debugger here [https://code.visualstudio.com/docs/editor/debugging] and more about debugging Python applications here [https://code.visualstudio.com/docs/python/debugging]

Windows System Setup

NOTE: The following has not been fully tested!

Build tools

MISSING

Required software

Python 3

Installation

MISSING

Configuration

Add the python3 directory to your PATH so your system has access to the Python commands

MISSING

Git (distributed version control software)

Installation

MISSING

Configuration

Set your name (replace Your Name with your first and last name, e.g., Reuben Cummings)

git config --global user.name "Your Name"

Set your commit email address (replace your@email.address with your email address, e.g., reubano@gmail.com).

Note: This should be the same email address you used to signup for your GitHub account

git config --global user.email "your@email.address"

Check that both configurations have been set correctly

git config --global --list

PostgreSQL (relational database)

Installation

MISSING

Node Version Manager (NVM)

Installation

MISSING

Configuration

MISSING

Encrypted Volume w VeraCrypt

Installation

	VeraCrypt [https://www.veracrypt.fr/en/Downloads.html]

	follow the setup wizard instructions (use the defaults)

	if VeraCrypt is not working for you, try using one of the other free services found here [https://www.makeuseof.com/tag/syskey-encryption-alternatives-windows-10/]

Usage

Use Veracrypt to create an Encrypted Volume

	follow the beginners tutorial here [https://www.veracrypt.fr/en/Beginner%27s%20Tutorial.html]

	add the password to your personal Keepass Database so you don’t forget it
[image: Add a password in Keepass]

 _images/AssociateEIP.png
Elastic IP addresses (1/1) C Actions a Allocate Elastic I

v

View details
Q Filter Elastic IP addresses

Release Elastic IP addresses

Name v Public IPv4 address v Allocation ID v Associated instance ID ¥ Associate Elastic IP address

Disassociate Elastic IP address
- 3.216.14.60 eipalloc-0eb95b79eedb9cc42 i-014db2c29c8103f4e [4 172.31.9.100 eipasso

+ I ———————————————

_images/DisassociateEIP.png
Connect Actions ~

. . Connect
Q Filter by tags and attributes or search

(Chiegli el Fmm (Ins Fee Availability Zone -~ Instance State
Launch More Like This

Name v

OpenPeoriaClone us-east-1c @ stopped

Instance State

OpenPeoria i Instance Settings us-east-1c @ running

Image
Change Security Groups

CloudWatch Monitoring Attach Network Interface

Change Source/Dest. Check

Manage IP Addresses

_images/EIPs.png
¥ Network & Security
Security Groups New

Elastic IPs New

nav.xhtml

 Table of Contents

 		
 Welcome to the Nerevu Employee Handbook!

_images/public_dns.png
[] OpenPeoria i-014db2c29c8103f4e t3.medium us-east-1c

Instance: || i-014db2c29c8103f4e (OpenPeoria) Elastic IP: 3.216.14.60

Description Status Checks Monitoring Tags Usage Instructions

Instance ID i-014db2c29c8103f4e

Instance state running

@ running

& 2/2checks... None

Public DNS (IPv4)
IPv4 Public IP

‘ ec2-3-216-14-60.comp... 3.216.14.60

ec2-3-216-14-60.compute-1.amazonaws.com

3.216.14.60

_images/FinalAssociateEIP.png
Elastic IP address: 3.216.14.60

Resource type
Choose the type of resource with which to associate the Elastic IP address.

O Instance
() Network interface

/\ If you associate an Elastic IP address to an instance that already has an Elastic IP address associated, this
previously associated Elastic IP address will be disassociated but still allocated to your account. Learn more[4}

Instance

Q, Choose an instance ’ C

Private IP address
The private IP address with which to associate the Elastic IP address.

Q, Choose a private IP address ’

Reassociation
Specify whether the Elastic IP address can be reassociated with a different resource if it already associated with a resource.

[Allow this Elastic IP address to be reassociated

_images/IPlocation.png
IPv4 Public IP

3.216.14.60

_static/minus.png

_static/plus.png

_static/file.png

